login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A250393
Number of length 7+3 0..n arrays with no four consecutive terms having the maximum of any two terms equal to the minimum of the remaining two terms.
1
6, 1816, 74528, 1162292, 10203222, 61304844, 281731072, 1060924200, 3426341574, 9795159264, 25359512992, 60478538588, 134596669142, 282388072596, 563045400576, 1073890795600, 1969791998214, 3490220036904, 5996191000608
OFFSET
1,1
COMMENTS
Row 7 of A250387.
LINKS
FORMULA
Empirical: a(n) = n^10 - (2/3)*n^9 + (4087/840)*n^8 - (259/90)*n^7 + (713/180)*n^6 + (119/90)*n^5 - (1493/360)*n^4 + (202/45)*n^3 - (844/315)*n^2 + (11/15)*n.
Conjectures from Colin Barker, Aug 21 2017: (Start)
G.f.: 2*x*(3 + 875*x + 27441*x^2 + 220687*x^3 + 609695*x^4 + 647425*x^5 + 267419*x^6 + 39317*x^7 + 1538*x^8) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..0....1....3....2....1....3....0....0....3....3....2....1....3....2....3....0
..0....2....0....0....3....0....1....2....2....3....1....2....0....2....2....3
..1....3....0....3....2....3....2....3....0....2....0....1....3....0....1....3
..2....1....3....3....1....0....3....0....3....0....3....2....0....0....0....1
..3....0....3....1....0....2....3....0....3....1....3....0....2....1....3....2
..0....0....1....1....0....3....0....3....2....0....1....2....1....3....3....0
..1....1....2....3....2....3....2....3....0....3....0....1....2....0....1....0
..2....1....1....2....3....0....1....0....1....2....2....0....0....3....0....2
..3....0....3....1....3....1....3....0....3....0....0....0....0....0....0....1
..0....0....1....1....0....2....1....3....2....3....1....3....2....1....2....2
CROSSREFS
Sequence in context: A330056 A258900 A357760 * A221627 A160301 A209496
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 20 2014
STATUS
approved