login
A250390
Number of length 4+3 0..n arrays with no four consecutive terms having the maximum of any two terms equal to the minimum of the remaining two terms.
1
6, 274, 3384, 21950, 96866, 331128, 944272, 2352468, 5279310, 10902342, 21040360, 38386530, 66792362, 111607580, 180080928, 281826952, 429363798, 638727066, 930164760, 1328918374, 1866095154, 2579636576, 3515388080, 4728275100
OFFSET
1,1
COMMENTS
Row 4 of A250387.
LINKS
FORMULA
Empirical: a(n) = n^7 + (19/30)*n^6 + (51/20)*n^5 + (17/12)*n^4 - (1/4)*n^3 + (19/20)*n^2 - (3/10)*n.
Conjectures from Colin Barker, Aug 21 2017: (Start)
G.f.: 2*x*(3 + 113*x + 680*x^2 + 1107*x^3 + 547*x^4 + 70*x^5) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=5;
..5....4....3....3....0....1....3....2....0....4....1....1....1....2....4....2
..5....5....2....2....2....0....0....0....2....1....1....2....0....4....3....3
..2....5....4....4....4....2....4....3....0....2....5....0....5....5....2....4
..0....2....0....1....4....4....5....5....1....4....3....5....0....0....5....0
..1....3....4....4....1....4....5....0....2....1....4....1....3....1....4....4
..3....4....3....3....3....3....2....0....5....1....1....3....0....2....2....1
..0....5....2....4....5....1....1....5....3....2....2....0....3....5....1....0
CROSSREFS
Sequence in context: A348701 A233234 A281694 * A284071 A254628 A211080
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 20 2014
STATUS
approved