login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262876 Expansion of Product_{k>=1} 1/(1-x^(3*k-1))^k. 17
1, 0, 1, 0, 1, 2, 1, 2, 4, 2, 7, 6, 7, 12, 12, 16, 26, 22, 35, 44, 47, 68, 84, 88, 133, 146, 176, 238, 267, 324, 431, 468, 604, 746, 842, 1068, 1296, 1470, 1884, 2202, 2579, 3220, 3753, 4418, 5483, 6294, 7541, 9144, 10554, 12644, 15191, 17480, 21057, 24896 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

a(n) is the number of partitions of n into parts 3*k-1 of k kinds (k>=1).

In general, if s>0, t>0, GCD(s,t)=1 and g.f. = Product_{k>=1} 1/(1 - x^(s*k-t))^k then a(n) ~ s^(t^2/(3*s^2) - 7/18) * n^(t^2/(6*s^2) - 25/36) * exp(d(s,t) - Pi^4 * t^2 / (432*s^2 * Zeta(3)) + Pi^2 * t * 2^(2/3) * s^(2/3) * n^(1/3) / (12 * s^2 * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / (2^(2/3)*s^(2/3))) / (2^(t^2/(6*s^2) + 11/36) * sqrt(3*Pi) * Zeta(3)^(t^2/(6*s^2) - 7/36)), where d(s,t) = Integral_{x=0..infinity} 1/x * (exp(-(s-t)*x)/(1 - exp(-s*x))^2 - 1/(s^2*x^2) - t/(s^2*x) + exp(-x)*(1/12 - t^2/(2*s^2))) dx. - Vaclav Kotesovec, Oct 12 2015

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015

Vaclav Kotesovec, Graph - The asymptotic ratio (70000 terms)

FORMULA

a(n) ~ Zeta(3)^(19/108) * exp(d1 - Pi^4 / (3888*Zeta(3)) + Pi^2 * n^(1/3) / (2^(4/3)*3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (2^(35/108) * 3^(23/27) * sqrt(Pi) * n^(73/108)), where d1 = A263030 = Integral_{x=0..infinity} 1/x*(exp(-2*x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 1/(9*x) + exp(-x)/36) = -0.188708191979528532376410098649207973592114467268429221509... . - Vaclav Kotesovec, Oct 08 2015

MAPLE

with(numtheory):

a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

      `if`(irem(d+3, 3, 'r')=2, r, 0), d=divisors(j))*a(n-j), j=1..n)/n)

    end:

seq(a(n), n=0..60);  # Alois P. Heinz, Oct 05 2015

MATHEMATICA

nmax=100; CoefficientList[Series[Product[1/(1-x^(3k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]

nmax=100; CoefficientList[Series[E^Sum[1/j*x^(2*j)/(1-x^(3j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000219, A035528, A255610, A262877, A262878, A262879, A262883, A262946, A263136, A263141.

Sequence in context: A217920 A137406 A181293 * A263045 A333442 A319563

Adjacent sequences:  A262873 A262874 A262875 * A262877 A262878 A262879

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 04 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)