Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 19 2024 15:06:01
%S 1,2,5,16,69,426,3947,55612,1177747,36816650,1676270109,110202314208,
%T 10408422663015,1407329003121294,271801891072128621,
%U 74846096423770137324,29351301902680241116593,16374214768286861089202358,12985582377076992552497257703,14629438237685095017820000611400
%N G.f.: exp( Sum_{n>=1} A047863(n)*x^n/n ), where A047863(n) = Sum_{k=0..n} binomial(n, k) * (2^k)^(n-k).
%C Logarithmic derivative yields A047863, the number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.
%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 69*x^4 + 426*x^5 + 3947*x^6 +...
%e where the logarithmic derivative yields A047863:
%e A'(x)/A(x) = 2 + 6*x + 26*x^2 + 162*x^3 + 1442*x^4 + 18306*x^5 + 330626*x^6 + 8488962*x^7 + 309465602*x^8 +...+ A047863(n+1)*x^n +...
%o (PARI) {A047863(n) = sum(k=0, n, binomial(n, k) * (2^k)^(n-k) )}
%o {a(n)=local(A);A=exp(sum(k=1,n+1, A047863(k)*x^k/k) +x*O(x^n)); polcoeff(A,n)}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A047863.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 14 2015