login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003316
Sum of lengths of longest increasing subsequences of all permutations of n elements.
(Formerly M2930)
15
1, 3, 12, 58, 335, 2261, 17465, 152020, 1473057, 15730705, 183571817, 2324298010, 31737207034, 464904410985, 7272666016725, 121007866402968, 2133917906948645, 39756493513248129, 780313261631908137, 16093326774432620874, 347958942706716524974
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. M. Baer and P. Brock, Natural sorting over permutation spaces, Math. Comp. 22 1968 385-410.
A. M. Vershik and S. V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux, Doklady Akademii Nauk SSSR, 1977, Volume 233, Number 6, Pages 1024-1027. In Russian.
FORMULA
From Alois P. Heinz, Nov 04 2018: (Start)
a(n) = Sum_{k=1..n} k * A047874(n,k).
A321274(n) < a(n) < A321273(n) for n > 1. (End)
A theorem of Vershik and Kerov (1977) implies that a(n) ~ 2 * sqrt(n) * n!. - Ludovic Schwob, Apr 04 2024
MAPLE
h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> add(k* (g(n-k, k, [k])), k=1..n):
seq(a(n), n=1..22); # Alois P. Heinz, Jul 05 2012
MATHEMATICA
h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := Sum[k*g[n-k, k, {k}], {k, 1, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A008304 (which is concerned with runs of adjacent elements).
Row sums of A214152.
Sequence in context: A020075 A020030 A121393 * A298419 A126959 A181328
KEYWORD
nonn,nice,easy
EXTENSIONS
Corrected a(13) and extended beyond a(16) by Alois P. Heinz, Jul 05 2012
STATUS
approved