login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the sums of the digits of k, k^2 and k^3 coincide.
5

%I #30 Jul 24 2021 02:29:42

%S 0,1,10,100,468,585,1000,4680,5850,5851,5868,10000,28845,46800,58500,

%T 58510,58680,58968,100000,288450,468000,585000,585100,586800,589680,

%U 1000000,2884500,4680000,5850000,5851000,5868000,5896800,10000000

%N Numbers k such that the sums of the digits of k, k^2 and k^3 coincide.

%C The sequence is clearly infinite, since we can add trailing zeros. Is the subset of values not ending in 0 infinite too (see A114135)?

%H David A. Corneth, <a href="/A111434/b111434.txt">Table of n, a(n) for n = 1..1124</a> (using the b-file in A114135).

%e 468 is in the sequence since 468^2 = 219024 and 468^3 = 102503232 and we have 18 = 4+6+8 = 2+1+9+0+2+4 = 1+0+2+5+0+3+2+3+2.

%e 5851 is in the sequence because 5851, 34234201 (= 5851^2) and 200304310051 (=5851^3) all have digital sum 19.

%p s:=proc(n) local nn: nn:=convert(n,base,10): sum(nn[j],j=1..nops(nn)): end: a:=proc(n) if s(n)=s(n^2) and s(n)=s(n^3) then n else fi end: seq(a(n),n=0..1000000); # _Emeric Deutsch_, May 13 2006

%t SumOfDig[n_]:=Apply[Plus, IntegerDigits[n]]; Do[s=SumOfDig[n]; If[s==SumOfDig[n^2] && s==SumOfDig[n^3], Print[n]], {n, 10^6}]

%t Select[Range[0,10000000],Length[Union[Total/@IntegerDigits[{#,#^2,#^3}]]] == 1&] (* _Harvey P. Dale_, Apr 26 2014 *)

%Y Cf. A011557, A058369, A070276.

%K base,nonn

%O 1,3

%A _Giovanni Resta_, Nov 21 2005

%E b-file Corrected by _David A. Corneth_, Jul 22 2021