This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113226 Number of permutations avoiding the pattern 12-34. 1
 1, 2, 6, 23, 107, 585, 3669, 25932, 203768, 1761109, 16595757, 169287873, 1857903529, 21823488238, 273130320026, 3627845694283, 50962676849199, 754814462534449, 11754778469338581, 191998054346198680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the number of permutations on [n] that avoid the mixed consecutive/scattered pattern 12-34 (also number that avoid 43-21). LINKS A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011. Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011. Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005. Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. in Appl. Math. 36 (2006), no. 2, 138-155. Steven Finch, Pattern-Avoiding Permutations [Broken link?] Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission] FORMULA In the recurrence coded in Mathematica below, w[n] = # (12-34)-avoiding permutations on [n]; v[n, a] is the number that start with a descent and have first entry a; u[n, a, k, b] is the number that start with an ascent and that have (i) first entry a, (ii) other than a, all ascent initiators = 2 := w[n] = u[n] + v[n]; v[n_] /; n >= 2 := v[n] = Sum[v[n, a], {a, 2, n}]; v[1, 1] = 1; v[n_, a_] /; 2 <= a <= n := v[n, a] = Sum[u[n - 1, b], {b, a - 1}] + Sum[v[n - 1, b], {b, 2, a - 1}]; u[1] = 1; u[n_] /; n >= 2 := u[n] = Sum[u[n, a], {a, n - 1}]; u[1, 1] = 1; u[n_, a_] /; a == n := 0; u[n_, a_] /; 1 <= a < n := u[n, a, n]; u[1, 1, k_] := 1; u[2, 1, k_] := 1; u[n_, a_, k_] /; a >= n := 0; u[n_, a_, k_] /; 1 <= a < n && n >= 3 := u[n, a, k] = Sum[u[n, a, k, b], {b, a + 1, n}]; u[n_, a_, k_, b_] /; 1 <= a < b <= n && k >= b + 2 := u[n, a, b + 1, b]; u[n_, a_, k_, b_] /; 1 <= a < n && b == n && k == n + 1 := u[n, a, n, n]; u[n_, a_, k_, b_] /; 1 == a < b == n && k == 2 := 1; u[n_, a_, k_, b_] /; 1 <= a < b <= n && k <= b := u[n, a, k, b] =   Sum[Binomial[b - k - If[k <= a, 1, 0], j1] Binomial[      k - 1 - If[a < k, 1, 0] - c, j2]*     u[n - 2 - j1 - j2, c, k - If[a < k, 1, 0] - j2], {c,     k - 1 - If[a < k, 1, 0]}, {j1, 0, b - k - If[k <= a, 1, 0]}, {j2, 0,     k - 1 - If[a < k, 1, 0] - c}]; u[n_, a_, k_, b_] /; 1 <= a < b < n && k == b + 1 && {a, b} == {1, 2} := 1; u[n_, a_, k_, b_] /; 1 <= a < b < n && k == b + 1 && {a, b} != {1, 2} := u[n, a, k, b] =   Sum[Binomial[n - b, i] Binomial[b - 2 - c, j] u[n - 2 - i - j, c,      b - 1 - j], {c, b - 2}, {i, 0, n - b}, {j, 0, b - 2 - c}]; Table[ w[n], {n, 0, 15}] CROSSREFS Sequence in context: A000772 A200405 A200403 * A071075 A007555 A101053 Adjacent sequences:  A113223 A113224 A113225 * A113227 A113228 A113229 KEYWORD nonn AUTHOR David Callan, Oct 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)