login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Chebyshev polynomials S(n,11) + S(n-1,11) with Diophantine property.
12

%I #76 Aug 25 2024 22:24:05

%S 1,12,131,1429,15588,170039,1854841,20233212,220710491,2407582189,

%T 26262693588,286482047279,3125039826481,34088956044012,

%U 371853476657651,4056299287190149,44247438682433988,482665526219583719,5265073349732986921,57433141320843272412

%N Chebyshev polynomials S(n,11) + S(n-1,11) with Diophantine property.

%C All positive integer solutions of Pell equation (3*a(n))^2 - 13*b(n)^2 = -4 together with b(n)=A078922(n+1), n>=0.

%H Colin Barker, <a href="/A097783/b097783.txt">Table of n, a(n) for n = 0..963</a>

%H Andersen, K., Carbone, L. and Penta, D., <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.

%H Sergio Falcon, <a href="http://dx.doi.org/10.4236/am.2014.515216">Relationships between Some k-Fibonacci Sequences</a>, Applied Mathematics, 2014, 5, 2226-2234.

%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://cdm.ucalgary.ca/article/view/61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-1).

%F a(n) = S(n, 11) + S(n-1, 11) = S(2*n, sqrt(13)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) = 0 = U(-1, x).

%F a(n) = (-2/3)*i*((-1)^n)*T(2*n+1, 3*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.

%F G.f.: (1+x)/(1-11*x+x^2).

%F a(n) = L(n,-11)*(-1)^n, where L is defined as in A108299; see also A078922 for L(n,+11). - _Reinhard Zumkeller_, Jun 01 2005

%F a(n) = 11*a(n-1) - a(n-2) with a(0)=1 and a(1)=12. - _Philippe Deléham_, Nov 17 2008

%F From _Peter Bala_, Mar 22 2015: (Start)

%F The aerated sequence (b(n))n>=1 = [1, 0, 12, 0, 131, 0, 1429, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.

%F b(n) = 1/2*( (-1)^n - 1 )*F(n,3) + 1/3*( 1 + (-1)^(n+1) )*F(n+1,3), where F(n,x) is the n-th Fibonacci polynomial. The o.g.f. is x*(1 + x^2)/(1 - 11*x^2 + x^4).

%F Exp( Sum_{n >= 1} 6*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*x^n.

%F Exp( Sum_{n >= 1} (-6)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)

%F a(n) = A006497(2n+1)/3. - _Adam Mohamed_, Aug 22 2024

%e All positive solutions to the Pell equation x^2 - 13*y^2 = -4 are (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ...

%t CoefficientList[Series[(1 + x) / (1 - 11 x + x^2), {x, 0, 33}], x] (* _Vincenzo Librandi_, Mar 22 2015 *)

%o (Sage) [(lucas_number2(n,11,1)-lucas_number2(n-1,11,1))/9 for n in range(1, 19)] # _Zerinvary Lajos_, Nov 10 2009

%o (PARI) Vec((1+x)/(1-11*x+x^2) + O(x^30)) \\ _Michel Marcus_, Mar 22 2015

%o (Magma) I:=[1,12]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 22 2015

%Y Cf. S(n, 11) = A004190(n).

%Y Cf. A000045, A002315, A004146, A006190, A006497, A100047, A113224, A192425.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Aug 31 2004