login
A097780
Chebyshev polynomials S(n,25) with Diophantine property.
3
1, 25, 624, 15575, 388751, 9703200, 242191249, 6045078025, 150884759376, 3766073906375, 94000962899999, 2346257998593600, 58562449001940001, 1461714967049906425, 36484311727245720624, 910646078214093109175
OFFSET
0,2
COMMENTS
All positive integer solutions of Pell equation b(n)^2 - 621*a(n)^2 = +4 together with b(n)=A090733(n+1), n>=0. Note that D=621=69*3^2 is not squarefree.
For positive n, a(n) equals the permanent of the tridiagonal matrix with 25's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,24}. - Milan Janjic, Jan 25 2015
FORMULA
a(n) = S(n, 25)=U(n, 25/2) = S(2*n+1, sqrt(25))/sqrt(25) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 25*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=25; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (25+3*sqrt(69))/2 and am := (25-3*sqrt(69))/2.
G.f.: 1/(1-25*x+x^2).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*24^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/23*(23 + 3*sqrt(69)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/50*(23 + 3*sqrt(69)). - Peter Bala, Dec 23 2012
EXAMPLE
(x,y) = (2,0), (25;1), (623;25), (15550;624), ... give the nonnegative integer solutions to x^2 - 69*(3*y)^2 =+4.
MATHEMATICA
LinearRecurrence[{25, -1}, {1, 25}, 20] (* Harvey P. Dale, Aug 23 2021 *)
PROG
(Sage) [lucas_number1(n, 25, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
CROSSREFS
Sequence in context: A307145 A061614 A171330 * A366476 A209222 A207691
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved