login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097779
Number of Motzkin paths of length n, starting with an up step, ending with a down step and having no peaks (can be easily expressed using RNA secondary structure terminology).
2
1, 0, 0, 1, 1, 2, 5, 11, 25, 58, 135, 317, 750, 1785, 4272, 10275, 24823, 60210, 146576, 358010, 877087, 2154751, 5307166, 13102511, 32418806, 80375267, 199650310, 496803811, 1238276667, 3091173482, 7727893389, 19346109435, 48493869237
OFFSET
0,6
FORMULA
G.f. = z + (1-z)^2*[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2)
D-finite with recurrence (n+2)*a(n) -3*n*a(n-1) +(n-4)*a(n-2) +(-n+1)*a(n-3) +3*(n-5)*a(n-4) +(-n+7)*a(n-5)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(6)=5 because we have UHHHHD, UHDUHD, UUHHDD, UHUHDD and UUHDHD, where U=(1,1), D=(1,-1) and H=(1,0).
MAPLE
G:=z+1/2*(1-z)^2/z^2*(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4)): Gser:=series(G, z=0, 40): 1, seq(coeff(Gser, z^n), n=1..37);
MATHEMATICA
CoefficientList[Series[x+(1-x)^2 (1-x+x^2-Sqrt[1-2x-x^2-2x^3+x^4])/(2x^2), {x, 0, 40}], x] (* Harvey P. Dale, Dec 24 2016 *)
CROSSREFS
Cf. A004148.
Sequence in context: A094981 A304969 A239812 * A319768 A366095 A354651
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 11 2004
STATUS
approved