The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062143 Fifth column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x). 2
 1, 40, 1080, 25200, 554400, 11975040, 259459200, 5708102400, 128432304000, 2968213248000, 70643475302400, 1733976211968000, 43927397369856000, 1148870392750080000, 31019500604252160000, 864410083505160192000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The coefficients of the numerator polynomials N(m,x) of the e.g.f. for column m (here m=4) give triangle A062145. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..400 FORMULA a(n) = (n+4)!*binomial(n+7, 7)/4!; E.g.f.: (1+28*x+126*x^2+140*x^3+35*x^4)/(1-x)^12. If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * stirling1(n,k) * stirling2(j,i) * x^(k-j) then a(n-4) = (-1)^n*f(n,4,-8), (n>=4). - Milan Janjic, Mar 01 2009 EXAMPLE a(3) = (3+4)! * binomial(3+7,7) / 4! = (5040 * 120) / 24 = 25200. - Indranil Ghosh, Feb 23 2017 MATHEMATICA Table[(n+4)!*Binomial[n+7, 7]/4!, {n, 0, 15}] (* Indranil Ghosh, Feb 23 2017 *) PROG (PARI) a(n) = (n+4)!*binomial(n+7, 7)/4! \\ Indranil Ghosh, Feb 23 2017 (Python) import math f=math.factorial def C(n, r):return f(n)/f(r)/f(n-r) def A062143(n):return f(n+4)*C(n+7, 7)/f(4) # Indranil Ghosh, Feb 23 2017 (MAGMA) [Factorial(n+4)*Binomial(n+7, 7)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018 CROSSREFS Sequence in context: A028228 A165380 A075907 * A284838 A124100 A071952 Adjacent sequences:  A062140 A062141 A062142 * A062144 A062145 A062146 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 11:27 EDT 2020. Contains 333273 sequences. (Running on oeis4.)