The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284838 Number of edges in the n-Keller graph. 2
 0, 40, 1088, 21888, 397312, 6883328, 116244480, 1932230656, 31778668544, 518791888896, 8424565768192, 136279337467904, 2198302774788096, 35386835907641344, 568757233463066624, 9130929873047519232, 146464646890277306368, 2347871574175904694272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..800 Eric Weisstein's World of Mathematics, Keller Graph Index entries for linear recurrences with constant coefficients, signature (36,-432,1984,-3072). FORMULA a(n) = 2^(2*n-1)*(4^n-3^n-n). From Robert Israel, Apr 04 2017: (Start) G.f.: 8*(5-44*x)*x^2/((1-16*x)*(1-12*x)*(1-4*x)^2). E.g.f.: exp(16*x)/2-exp(12*x)/2-2*x*exp(4*x). (End) a(n) = 36*a(n-1) - 432*a(n-2) + 1984*a(n-3) - 3072*a(n-4) for n>4. - Colin Barker, Apr 04 2017 MAPLE f:= n -> 2^(2*n-1)*(4^n-3^n-n): map(f, [\$1..30]); # Robert Israel, Apr 04 2017 MATHEMATICA Table[2^(2 n - 1) (4^n - 3^n - n), {n, 15}] LinearRecurrence[{36, -432, 1984, -3072}, {0, 40, 1088, 21888}, 20] (* Eric W. Weisstein, Mar 21 2018 *) CoefficientList[Series[-((8 x (-5 + 44 x))/((1 - 4 x)^2 (1 - 28 x + 192 x^2))), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 21 2018 *) PROG (PARI) concat(0, Vec(8*(5-44*x)*x^2/((1-16*x)*(1-12*x)*(1-4*x)^2) + O(x^30))) \\ Colin Barker, Apr 04 2017 (Python) def a(n): return 2**(2*n-1)*(4**n-3**n-n) # Indranil Ghosh, Apr 04 2017 CROSSREFS Cf. A000302(n) = 4^n (number of vertices in the n-Keller graph). Cf. A284850(n) = a(n)/2^(2*n-1) (vertex degrees of the n-Keller graph). Sequence in context: A165380 A075907 A062143 * A124100 A071952 A331906 Adjacent sequences:  A284835 A284836 A284837 * A284839 A284840 A284841 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Apr 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 23:21 EST 2020. Contains 332113 sequences. (Running on oeis4.)