OFFSET
1,2
COMMENTS
Total number of largest parts in all partitions of n into squares (A000290).
FORMULA
G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) * Product_{j=1..i} 1/(1 - x^(j^2)).
EXAMPLE
a(9) = 13 because we have [9], [4, 4, 1], [4, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1] and 1 + 2 + 1 + 9 = 13.
MATHEMATICA
nmax = 70; Rest[CoefficientList[Series[Sum[x^i^2/(1 - x^i^2) Product[1/(1 - x^j^2), {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^71); Vec(sum(i=1, 71, x^(i^2)/(1 - x^(i^2)) * prod(j=1, i, 1/(1 - x^(j^2))))) \\ Indranil Ghosh, Apr 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 03 2017
STATUS
approved