login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172501
a(n) = binomial(n+8,8)*6^n.
3
1, 54, 1620, 35640, 641520, 10007712, 140107968, 1801388160, 21616657920, 244988789760, 2645878929408, 27420927086592, 274209270865920, 2657720625315840, 25058508752977920, 230538280527396864, 2074844524746571776, 18307451688940339200, 158664581304149606400
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=8) of 7 objects: r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight (8) u's.
LINKS
Index entries for linear recurrences with constant coefficients, signature (54,-1296,18144,-163296,979776,-3919104,10077696,-15116544,10077696).
FORMULA
From Colin Barker, Jul 24 2017: (Start)
G.f.: 1 / (1 - 6*x)^9.
a(n) = (2^(-7 + n)*3^(-2 + n)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(8 + n)) / 35.
(End)
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 4785948/7 - 3750000*log(6/5).
Sum_{n>=0} (-1)^n/a(n) = 39530064*log(7/6) - 213275484/35. (End)
MATHEMATICA
Table[Binomial[n + 8, 8]*6^n, {n, 0, 20}]
PROG
(Magma) [6^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
(PARI) Vec(1 / (1 - 6*x)^9 + O(x^30)) \\ Colin Barker, Jul 24 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 05 2010
STATUS
approved