The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062151 Fifth column sequence of triangle A062138 (generalized a=5 Laguerre). 2
 1, 50, 1650, 46200, 1201200, 30270240, 756756000, 19027008000, 485188704000, 12614906304000, 335556507686400, 9151541118720000, 256243151324160000, 7371918353479680000, 217998157024327680000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..400 FORMULA E.g.f.: (1+36*x+216*x^2+336*x^3+126*x^4)/(1-x)^14. a(n) = A062138(n+4, 4). a(n) = (n+4)!*binomial(n+9, 9)/4!. If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-9) = (-1)^(n-1)*f(n,9,-5), (n>=9). - Milan Janjic, Mar 01 2009 EXAMPLE a(2) = (2+4)! * binomial(2+9,9) / 4! = (720 * 55)/ 24 = 1650. - Indranil Ghosh, Feb 24 2017 MATHEMATICA Table[(n+4)!*Binomial[n+9, 9]/4!, {n, 0, 15}] (* Indranil Ghosh, Feb 24 2017 *) PROG (PARI) a(n) = (n+4)!*binomial(n+9, 9)/4! \\ Indranil Ghosh, Feb 24 2017 (Python) import math f=math.factorial def C(n, r):return f(n)/f(r)/f(n-r) def A062151(n): return f(n+4)*C(n+9, 9)/f(4) # Indranil Ghosh, Feb 24 2017 (MAGMA) [Factorial(n+4)*Binomial(n+9, 9)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018 CROSSREFS Cf. A062150. Sequence in context: A159184 A159187 A075912 * A001241 A164986 A224121 Adjacent sequences:  A062148 A062149 A062150 * A062152 A062153 A062154 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 03:09 EDT 2020. Contains 333104 sequences. (Running on oeis4.)