login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324225
Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
3
1, 1, 2, 1, 2, 4, 6, 4, 2, 6, 12, 18, 24, 18, 12, 6, 24, 48, 72, 96, 120, 96, 72, 48, 24, 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120, 720, 1440, 2160, 2880, 3600, 4320, 5040, 4320, 3600, 2880, 2160, 1440, 720, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 35280, 30240, 25200, 20160, 15120, 10080, 5040
OFFSET
1,3
COMMENTS
T(n,k) is the number of occurrences of k in all (signed) displacement lists [p(i)-i, i=1..n] of permutations p of [n].
LINKS
Nadir Samos Sáenz de Buruaga, Rafał Bistroń, Marcin Rudziński, Rodrigo Miguel Chinita Pereira, Karol Życzkowski, and Pedro Ribeiro, Fidelity decay and error accumulation in quantum volume circuits, arXiv:2404.11444 [quant-ph], 2024. See p. 18.
Wikipedia, Permutation
FORMULA
T(n,k) = T(n,-k).
T(n,k) = (n-t)*(n-1)! if t < n with t = |k|, T(n,k) = 0 otherwise.
T(n,k) = |k|! * A324224(n,k).
E.g.f. of column k: x^t/t * hypergeom([2, t], [t+1], x) with t = |k|+1.
|T(n,k)-T(n,k-1)| = (n-1)! for k = 1-n..n.
Sum_{k=0..n-1} T(n,k) = A001710(n+1).
EXAMPLE
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices
[1 ] [1 ] [ 1 ] [ 1 ] [ 1] [ 1]
[ 1 ] [ 1] [1 ] [ 1] [1 ] [ 1 ]
[ 1] [ 1 ] [ 1] [1 ] [ 1 ] [1 ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2].
Triangle T(n,k) begins:
: 1 ;
: 1, 2, 1 ;
: 2, 4, 6, 4, 2 ;
: 6, 12, 18, 24, 18, 12, 6 ;
: 24, 48, 72, 96, 120, 96, 72, 48, 24 ;
: 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120 ;
MAPLE
b:= proc(s, c) option remember; (n-> `if`(n=0, c,
add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)):
seq(T(n), n=1..8);
# second Maple program:
egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1):
T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
# third Maple program:
T:= (n, k)-> (t-> `if`(t<n, (n-t)*(n-1)!, 0))(abs(k)):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
MATHEMATICA
T[n_, k_] := With[{t = Abs[k]}, If[t<n, (n-t)(n-1)!, 0]];
Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 8}] // Flatten (* Jean-François Alcover, Mar 25 2021, after 3rd Maple program *)
CROSSREFS
Columns k=0-6 give (offsets may differ): A000142, A001563, A062119, A052571, A052520, A282822, A052521.
Row sums give A001563.
T(n+1,n) gives A000142.
T(n+1,n-1) gives A052849.
T(n+1,n-2) gives A052560 for n>1.
Cf. A152883 (right half of this triangle without center column), A162608 (left half of this triangle), A306461, A324224.
Cf. A001710.
Sequence in context: A179787 A358918 A368058 * A214739 A296159 A283334
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Feb 18 2019
STATUS
approved