login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
3

%I #44 Apr 25 2024 10:42:52

%S 1,1,2,1,2,4,6,4,2,6,12,18,24,18,12,6,24,48,72,96,120,96,72,48,24,120,

%T 240,360,480,600,720,600,480,360,240,120,720,1440,2160,2880,3600,4320,

%U 5040,4320,3600,2880,2160,1440,720,5040,10080,15120,20160,25200,30240,35280,40320,35280,30240,25200,20160,15120,10080,5040

%N Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

%C T(n,k) is the number of occurrences of k in all (signed) displacement lists [p(i)-i, i=1..n] of permutations p of [n].

%H Alois P. Heinz, <a href="/A324225/b324225.txt">Rows n = 1..100, flattened</a>

%H Nadir Samos Sáenz de Buruaga, Rafał Bistroń, Marcin Rudziński, Rodrigo Miguel Chinita Pereira, Karol Życzkowski, and Pedro Ribeiro, <a href="https://arxiv.org/abs/2404.11444">Fidelity decay and error accumulation in quantum volume circuits</a>, arXiv:2404.11444 [quant-ph], 2024. See p. 18.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_matrix">Permutation matrix</a>

%F T(n,k) = T(n,-k).

%F T(n,k) = (n-t)*(n-1)! if t < n with t = |k|, T(n,k) = 0 otherwise.

%F T(n,k) = |k|! * A324224(n,k).

%F E.g.f. of column k: x^t/t * hypergeom([2, t], [t+1], x) with t = |k|+1.

%F |T(n,k)-T(n,k-1)| = (n-1)! for k = 1-n..n.

%F Sum_{k=0..n-1} T(n,k) = A001710(n+1).

%e The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices

%e [1 ] [1 ] [ 1 ] [ 1 ] [ 1] [ 1]

%e [ 1 ] [ 1] [1 ] [ 1] [1 ] [ 1 ]

%e [ 1] [ 1 ] [ 1] [1 ] [ 1 ] [1 ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2].

%e Triangle T(n,k) begins:

%e : 1 ;

%e : 1, 2, 1 ;

%e : 2, 4, 6, 4, 2 ;

%e : 6, 12, 18, 24, 18, 12, 6 ;

%e : 24, 48, 72, 96, 120, 96, 72, 48, 24 ;

%e : 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120 ;

%p b:= proc(s, c) option remember; (n-> `if`(n=0, c,

%p add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)):

%p seq(T(n), n=1..8);

%p # second Maple program:

%p egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1):

%p T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):

%p seq(seq(T(n, k), k=1-n..n-1), n=1..8);

%p # third Maple program:

%p T:= (n, k)-> (t-> `if`(t<n, (n-t)*(n-1)!, 0))(abs(k)):

%p seq(seq(T(n, k), k=1-n..n-1), n=1..8);

%t T[n_, k_] := With[{t = Abs[k]}, If[t<n, (n-t)(n-1)!, 0]];

%t Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 8}] // Flatten (* _Jean-François Alcover_, Mar 25 2021, after 3rd Maple program *)

%Y Columns k=0-6 give (offsets may differ): A000142, A001563, A062119, A052571, A052520, A282822, A052521.

%Y Row sums give A001563.

%Y T(n+1,n) gives A000142.

%Y T(n+1,n-1) gives A052849.

%Y T(n+1,n-2) gives A052560 for n>1.

%Y Cf. A152883 (right half of this triangle without center column), A162608 (left half of this triangle), A306461, A324224.

%Y Cf. A001710.

%K nonn,look,tabf

%O 1,3

%A _Alois P. Heinz_, Feb 18 2019