OFFSET
0,3
COMMENTS
There are no (2n+1)-regular multigraphs satisfying the condition above.
Multigraphs are loopless.
Initial terms computed with 'Nauty and Traces'.
LINKS
Brendan McKay and Adolfo Piperno, Nauty and Traces
FORMULA
Conjectures from Colin Barker, Feb 18 2019: (Start)
G.f.: x*(1 + 3*x - x^2 + 4*x^3 - x^4 + 6*x^5 + 4*x^7 - x^8 - x^9 + x^10) / ((1 - x)^6*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) - 2*a(n-5) + 4*a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) - 2*a(n-10) + 3*a(n-11) - a(n-12) for n>11.
(End)
Equivalent conjecture: 1152*a(n) = 6*n^5 + 30*n^4 + 220*n^3 + 540*n^2 + 1143*n - 353 + 72*A056594(n) + 128*A049347(n) + 153*A181983(n+1). - R. J. Mathar, Mar 09 2019
PROG
(nauty/shell) for ((n=0; n<76; n=n+2)); do geng -c -d1 5 -q | multig -m${n} -u; done
CROSSREFS
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Feb 18 2019
EXTENSIONS
a(28)-a(30) from Andrew Howroyd, Mar 18 2020
STATUS
approved