login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179973
Number of permutations of [n] whose cycle lengths are nondecreasing when cycles are ordered by their minima and these minima are {1..k} (for some k <= n).
6
1, 1, 2, 4, 12, 42, 216, 1200, 8664, 66384, 612264, 5910024, 66723384, 776642664, 10311400344, 141065450904, 2153769250584, 33743736435864, 583781959921944, 10308436641381144, 198863818304824344, 3914117125411211544, 83301822014343774744, 1805447764831655109144
OFFSET
0,3
COMMENTS
The original name was: Row sums of A179972 and also of A179974.
LINKS
FORMULA
From Alois P. Heinz, Jul 09 2023: (Start)
a(n) = Sum_{lambda in partitions(n)} (n - |lambda|)!.
Limit_{n->oo} A004086(a(n))/10^A055642(a(n)) = A364128. (End)
EXAMPLE
a(4) = 12 = 6 + 2 + 2 + 1 + 1: (1234), (1243), (1324), (1342), (1423), (1432),
(13)(24), (14)(23), (1)(234), (1)(243), (1)(2)(34), (1)(2)(3)(4).
MAPLE
a:= n-> add((n-nops(p))!, p=combinat[partition](n)):
seq(a(n), n=0..24); # Alois P. Heinz, Jul 09 2023
# second Maple program:
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
(p-n)!, b(n, i-1, p)+b(n-i, min(n-i, i), p-1))
end:
a:= n-> b(n$3):
seq(a(n), n=0..24); # Alois P. Heinz, Jul 09 2023
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p - n)!, b[n, i - 1, p] + b[n - i, Min[n - i, i], p - 1]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 16 2023, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alford Arnold, Aug 05 2010
EXTENSIONS
Edited by R. J. Mathar, May 17 2016
a(0), a(9)-a(23) and new name from Alois P. Heinz, Jul 09 2023
STATUS
approved