login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179975
Smallest k such that k*10^n is a sum of two successive primes.
11
5, 3, 1, 6, 6, 6, 14, 6, 9, 19, 21, 21, 42, 93, 21, 6, 11, 2, 12, 111, 37, 39, 63, 38, 42, 24, 15, 15, 60, 6, 39, 82, 47, 58, 337, 49, 72, 25, 34, 21, 6, 107, 128, 96, 20, 2, 63, 231, 70, 7, 62, 144, 28, 151, 157, 33, 98, 55, 134, 162, 87, 201, 124, 303, 64, 106, 130, 13, 43
OFFSET
0,1
COMMENTS
From Robert G. Wilson v, Aug 11 2010: (Start)
A179975 n's such that a(n)=1: 3, 335, ..., .
A179975 First occurrence of k: 3, 18, 2, ???, 1, 4, 50, 162, 9, 335, 17, 19, 68, 7, 27, ..., .
Records: 5, 6, 14, 19, 21, 42, 93, 111, 337, 449, 862, 1049, 1062, 1122, 1280, 2278, 3168, 4290, ..., . (End)
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..400.
Dario Alejandro Alpern, Brilliant numbers
EXAMPLE
a(0)=5 because 5=2+3
a(1)=3 because 30=13+17
a(2)=1 because 100=47+53
a(3)=6 because 6000=2999+3001.
MATHEMATICA
Join[{5, 3}, Reap[Do[Do[n=10^m k; If[n==PreviousPrime[n/2]+NextPrime[n/2], Sow[k]; Break[]], {k, 2000}], {m, 2, 50}]][[2, 1]]]
f[n_] := Block[{k = 1, tn = 10^n}, While[h = k*tn/2; NextPrime[h, -1] + NextPrime@h != k*tn, k++ ]; k]; f[1] = 3; Array[f, 70, 0] (* Robert G. Wilson v, Aug 11 2010 *)
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 04 2010
EXTENSIONS
More terms from Robert G. Wilson v, Aug 11 2010
STATUS
approved