login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362362
Number of permutations of [n] such that each cycle contains its length as an element.
7
1, 1, 1, 3, 8, 36, 174, 1104, 7440, 62640, 545040, 5649840, 60681600, 748621440, 9518342400, 136758585600, 2009451628800, 32848492723200, 549241915622400, 10066913176320000, 188293339922688000, 3832031198451456000, 79291640831090688000, 1771146970953744384000
OFFSET
0,4
COMMENTS
The cycle lengths are distinct as a consequence of the definition.
LINKS
Wikipedia, Permutation
EXAMPLE
a(3) = 3: (123), (132), (1)(23).
a(4) = 8: (1234), (1243), (1324), (1342), (1423), (1432), (1)(234), (1)(243).
MAPLE
a:= n-> add((n-nops(p))!, p=select(l-> nops(l)=
nops({l[]}), combinat[partition](n))):
seq(a(n), n=0..24);
# second Maple program:
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!, b(n, i-1, p)+b(n-i, min(n-i, i-1), p-1)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..24);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[i*(i + 1)/2 < n, 0, If[n == 0, p!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 15 2023, from second Maple program *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 05 2023
STATUS
approved