login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321751
Sum of coefficients of monomial symmetric functions in the power sum symmetric function of the integer partition with Heinz number n.
4
1, 1, 1, 3, 1, 2, 1, 10, 3, 2, 1, 7, 1, 2, 2, 47, 1, 6, 1, 6, 2, 2, 1, 26, 3, 2, 10, 6, 1, 6, 1, 246, 2, 2, 2, 26, 1, 2, 2, 24, 1, 5, 1, 6, 6, 2, 1, 138, 3, 6, 2, 6, 1, 23, 2, 23, 2, 2, 1, 20, 1, 2, 7, 1602, 2, 5, 1, 6, 2, 6, 1, 105, 1, 2, 6, 6, 2, 5, 1, 114
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of ordered set partitions of {1, 2, ..., A001222(n)} whose blocks, when i is replaced by the i-th prime index of n, have weakly decreasing sums.
EXAMPLE
The sum of coefficients of p(211) = m(4) + 2m(22) + 2m(31) + 2m(211) is a(12) = 7.
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Sum[Times@@Factorial/@Length/@Split[Sort[Total/@s]], {s, sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[i]], {i, PrimeOmega[n]}]}], {n, 50}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved