%I #5 Nov 22 2018 18:17:51
%S 1,2,-1,-1,1,3,-3,1,-3,5,-2,1,-2,1,4,-2,-4,4,-1,-2,3,2,-4,1,-4,2,7,-7,
%T 2,4,-4,-7,10,-3,-1,1,2,-3,1,5,-5,-5,5,5,-5,1,-5,9,5,-7,-9,9,-2,-5,5,
%U 11,-11,-8,10,-2,5,-7,-11,14,10,-14,3,5,-9,-8,10,12
%N Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C Also the coefficient of e(v) in f(u), where f is forgotten symmetric functions and e is elementary symmetric functions.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e Tetrangle begins:
%e (1): 1
%e .
%e (2): 2 -1
%e (11): -1 1
%e .
%e (3): 3 -3 1
%e (21): -3 5 -2
%e (111): 1 -2 1
%e .
%e (4): 4 -2 -4 4 -1
%e (22): -2 3 2 -4 1
%e (31): -4 2 7 -7 2
%e (211): 4 -4 -7 10 -3
%e (1111): -1 1 2 -3 1
%e .
%e (5): 5 -5 -5 5 5 -5 1
%e (41): -5 9 5 -7 -9 9 -2
%e (32): -5 5 11 11 -8 10 -2
%e (221): 5 -7 11 14 10 14 3
%e (311): 5 -9 -8 10 12 13 3
%e (2111): -5 9 10 14 13 17 -4
%e (11111): 1 -2 -2 3 3 -4 1
%e For example, row 14 gives: m(32) = -5h(5) + 11h(32) + 5h(41) - 11h(221) - 8h(311) + 10h(2111) - 2h(11111).
%Y This is a regrouping of the triangle A321748. Row sums are A155972.
%Y Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A319191, A319193, A321912-A321935.
%K sign,tabf
%O 1,2
%A _Gus Wiseman_, Nov 22 2018