login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (-1)^n*((x + 1)^n - x^n + 1), 0 <= k <= max(0, n - 1).
1

%I #15 Nov 22 2018 20:20:32

%S 1,-2,2,2,-2,-3,-3,2,4,6,4,-2,-5,-10,-10,-5,2,6,15,20,15,6,-2,-7,-21,

%T -35,-35,-21,-7,2,8,28,56,70,56,28,8,-2,-9,-36,-84,-126,-126,-84,-36,

%U -9,2,10,45,120,210,252,210,120,45,10,-2,-11,-55,-165,-330,-462,-462,-330

%N Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (-1)^n*((x + 1)^n - x^n + 1), 0 <= k <= max(0, n - 1).

%C A variant of Pascal's triangle, the first column replaced by 2 (if n > 0), the last column dropped, and then odd rows multiplied by (-1)^n.

%C Absolute value row sums are A000079.

%F From _Franck Maminirina Ramaharo_, Nov 22 2018: (Start)

%F T(n,k) = (-1)^n*binomial(n, k) + (-1)^n*delta(0, k) - delta(0, n), where delta is Kronecker's delta-symbol.

%F G.f.: (1 + 2*x*y - (1 - x - x^2)*y^2)/((1 + y)*(1 + x*y)*(1 + y + x*y)).

%F E.g.f.: (1 - exp(y) + exp(x*y))*exp(-(1 + x)*y). (End)

%e Triangle begins:

%e 1;

%e -2;

%e 2, 2;

%e -2, -3, -3;

%e 2, 4, 6, 4;

%e -2, -5, -10, -10, -5;

%e 2, 6, 15, 20, 15, 6;

%e -2, -7, -21, -35, -35, -21, -7;

%e 2, 8, 28, 56, 70, 56, 28, 8;

%e -2, -9, -36, -84, -126, -126, -84, -36, -9;

%e 2, 10, 45, 120, 210, 252, 210, 120, 45, 10;

%e -2, -11, -55, -165, -330, -462, -462, -330, -165, -55, -11;

%e 2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12;

%e ...

%t Table[CoefficientList[(-1)^n*(x + 1)^n - (-1)^n*(x^n - 1), x], {n, 0, 12}]

%o (Maxima) create_list((-1)^n*binomial(n, k) + (-1)^n*kron_delta(0, k) - kron_delta(0, n), n, 0, 12, k, 0, max(0, n - 1)); /* _Franck Maminirina Ramaharo_, Nov 21 2018 */

%Y Cf. A074909, A007318, A108086, A117440, A130595.

%K sign,tabf,easy

%O 0,2

%A _Roger L. Bagula_, Nov 29 2009