login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168559
a(n) = n^2 + a(n-1), with a(1)=0.
5
0, 4, 13, 29, 54, 90, 139, 203, 284, 384, 505, 649, 818, 1014, 1239, 1495, 1784, 2108, 2469, 2869, 3310, 3794, 4323, 4899, 5524, 6200, 6929, 7713, 8554, 9454, 10415, 11439, 12528, 13684, 14909, 16205, 17574, 19018, 20539, 22139, 23820, 25584
OFFSET
1,2
COMMENTS
Sum of the first n perfect squares (A000330), minus 1.
FORMULA
a(n) = n^3/3 + n^2/2 + n/6 - 1. - Gary Detlefs, Jun 30 2010
For n>1, a(n) = 2^2 + 3^2 + ... + n^2. - Washington Bomfim, Feb 15 2011
G.f.: x*(4-3*x+x^2)/(1-x)^4. - Colin Barker, Feb 03 2012
a(n) = A000330(n) - 1. - Reinhard Zumkeller, Feb 03 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(1)=0, a(2)=4, a(3)=13, a(4)=29. - Harvey P. Dale, Dec 07 2013
MATHEMATICA
k=-1; lst={}; Do[k=n^2+k; AppendTo[lst, k], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 05 2009 *)
RecurrenceTable[{a[1]==0, a[n]==n^2+a[n-1]}, a, {n, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 13, 29}, 50] (* Harvey P. Dale, Dec 07 2013 *)
Accumulate[Range[50]^2] - 1 (* Paolo Xausa, Oct 04 2024 *)
PROG
(Haskell)
a168559 n = a168559_list !! (n-1)
a168559_list = scanl (+) 0 $ drop 2 a000290_list
-- Reinhard Zumkeller, Feb 03 2012
(PARI) a(n)=n^3/3+n^2/2+n/6-1 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A340002 A368570 A135039 * A212247 A213801 A301886
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 30 2009
STATUS
approved