login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340002
Random walk in R^3: Numerators of the expected distance after n steps.
2
0, 1, 4, 13, 28, 1199, 239, 113149, 1487, 14345663, 292223, 17110600987, 14849671, 545242142639, 961780559, 1704615588759647, 856088316689, 7836371329207844977, 1103759659545457, 16895087931630048788047, 59954362566895631, 2699144613568894213138579, 28918424475964028179
OFFSET
0,3
COMMENTS
The random variables X_n are defined by X_0 = 0 and X_(n+1) = X_n + U_n where U_n are i.i.d. random variables with uniform distribution on the 2-dimensional sphere. Then a(n) = E(|X_n|), take numerators.
Let (V_n)_n be i.i.d. random variables with uniform distribution on the interval [-2,2]. Then a(n) = E(|V_1+...+V_n|), take numerators.
LINKS
FORMULA
a(n)/A340003(n) ~ 2*sqrt(2*n)/sqrt(3*Pi).
a(n)/A340003(n) = (1/(2^(n-2) * (n+1)!)) * Sum_{k=0..floor((n-1)/2)} (-1)^k * C(n,k) * (n-2*k)^(n+1). - Ludovic Schwob, Jun 11 2022
EXAMPLE
0, 1, 4/3, 13/8, 28/15, 1199/576, 239/105, 113149/46080, 1487/567, 14345663/5160960, ... = A340002/A340003.
CROSSREFS
See A340003 for denominators.
Sequence in context: A155331 A155387 A155366 * A368570 A135039 A168559
KEYWORD
nonn,frac
AUTHOR
Ludovic Schwob, Dec 26 2020
STATUS
approved