login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073352
Positive integers making n^2*(n-1)*(2*n-1)^2*(7*n-1)/36 a square.
3
1, 4, 55, 868, 13825, 220324, 3511351, 55961284, 891869185, 14213945668, 226531261495, 3610286238244, 57538048550401, 916998490568164, 14614437800540215, 232914006318075268, 3712009663288664065
OFFSET
0,2
FORMULA
G.f.: (1 - 13*x + 4*x^2)/((1-x)*(1-16*x+x^2)).
a(n) = (4 + 3*ChebyshevU(n, 8) - 24*ChebyshevU(n-1, 8))/7. - G. C. Greubel, Feb 09 2020
EXAMPLE
G.f. = 1 + 4*x + 55*x^2 + 868*x^3 + 13825*x^4 + 220324*x^5 + 3511351*x^6 + ...
MAPLE
seq( simplify((4 +3*ChebyshevU(n, 8) -24*ChebyshevU(n-1, 8))/7), n=0..30); # G. C. Greubel, Feb 09 2020
MATHEMATICA
LinearRecurrence[{17, -17, 1}, {1, 4, 55}, 30] (* Harvey P. Dale, Dec 09 2018 *)
PROG
(PARI) {a(n) = if( n<0, a(-n), if( n<1, 1, 16*a(n-1) - a(n-2) - 8))}
(PARI) {a(n) = (4 + 3 * real((8 + 3 * quadgen(28))^n)) / 7}
(Magma) I:=[1, 4, 55]; [n le 3 select I[n] else 17*Self(n-1) - 17*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 09 2020
(Sage) [(4 +3*chebyshev_U(n, 8) -24*chebyshev_U(n-1, 8))/7 for n in (0..30)] # G. C. Greubel, Feb 09 2020
(GAP) a:=[1, 4, 55];; for n in [4..30] do a[n]:=17*a[n-1]-17*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 09 2020
CROSSREFS
Sequence in context: A204107 A285366 A202163 * A258793 A195634 A322627
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 27 2002
STATUS
approved