login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007750 Nonnegative integers n such that n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 is a square. 5
0, 1, 7, 24, 120, 391, 1921, 6240, 30624, 99457, 488071, 1585080, 7778520, 25261831, 123968257, 402604224, 1975713600, 6416405761, 31487449351, 102259887960, 501823476024, 1629741801607, 7997688167041, 25973608937760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 = Sum(i=1..n, i^2) * Sum(i=n+1..2*n, i^2). - Michael Somos, Jul 27 2002

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

K. R. S. Sastry, Problem 533 The College Mathematics Journal, 25, issue 4, 1994, p. 334.

K. R. S. Sastry, Square Products of Sums of Squares The College Mathematics Journal, 26, issue 4, 1995, p. 333.

Index entries for linear recurrences with constant coefficients, signature (1,16,-16,-1,1).

FORMULA

From Michael Somos, Jul 27 2002: (Start)

G.f.: x * (1 + 6*x + x^2) / ((1 - x) * (1 - 16*x^2 + x^4)).

a(n) = 16 * a(n-2) - a(n-4) + 8. (End)

From G. C. Greubel, Feb 10 2020: (Start)

a(2*n) = (4*ChebyshevU(n,8) - 11*ChebyshevU(n-1,8) - 4))/7.

a(2*n+1) = (11*ChebyshevU(n,8) - 4*ChebyshevU(n-1,8) - 4))/7. (End)

MAPLE

m:=30; S:=series(x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 10 2020

MATHEMATICA

CoefficientList[Series[x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 15 2017 *)

Table[If[EvenQ[n], (4*ChebyshevU[n/2, 8] -11*ChebyshevU[(n-2)/2, 8] -4)/7, (11*ChebyshevU[(n-1)/2, 8] -4*ChebyshevU[(n-3)/2, 8] -4)/7], {n, 0, 30}] (* G. C. Greubel, Feb 10 2020 *)

PROG

(PARI) {a(n) = if( n<0, a(-1-n), if( n<2, n>0, 16 * a(n-2) - a(n-4) + 8))} /* Michael Somos, Jul 27 2002 */

(PARI) {a(n) = local(w); if( n<0, 0, w = 8 + 3*quadgen(28); n = ((n+1)\2) * (-1)^(n%2); imag(w^n) + 4 * (real(w^n) - 1) / 7)} /* Michael Somos, Jul 27 2002 */

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)) )); // G. C. Greubel, Feb 10 2020

(Sage)

def A007750_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)) ).list()

A007750_list(30) # G. C. Greubel, Feb 10 2020

(GAP) a:=[0, 1, 7, 24, 120];; for n in [6..30] do a[n]:=a[n-1]+16*a[n-2]-16*a[n-3] -a[n-4]+a[n-5]; od; a; # G. C. Greubel, Feb 10 2020

CROSSREFS

Cf. A007751, A007752, A077412.

Sequence in context: A283457 A129797 A188120 * A153577 A009643 A108095

Adjacent sequences:  A007747 A007748 A007749 * A007751 A007752 A007753

KEYWORD

nonn

AUTHOR

John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)

EXTENSIONS

Edited by Michael Somos, Jul 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 15:16 EDT 2021. Contains 345049 sequences. (Running on oeis4.)