The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007751 Even bisection of A007750. 3
 0, 7, 120, 1921, 30624, 488071, 7778520, 123968257, 1975713600, 31487449351, 501823476024, 7997688167041, 127461187196640, 2031381306979207, 32374639724470680, 515962854284551681, 8223031028828356224 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..825 K. R. S. Sastry, Problem 533 The College Mathematics Journal, 25, issue 4, 1994, p. 334. K. R. S. Sastry, Square Products of Sums of Squares The College Mathematics Journal, 26, issue 4, 1995, p. 333. Index entries for linear recurrences with constant coefficients, signature (17,-17,1). FORMULA G.f.: x*(7 + x)/((1-x)*(1-16*x+x^2)). a(n) = 16*a(n-1) - a(n-2) + 8. a(n) = -4/7 + (2/7)*( (8-3*sqrt(7))^n + (8+3*sqrt(7))^n + (sqrt(7)/14)*( (8+3*sqrt(7))^n - (8-3*sqrt(7))^n ), with n>=0 - Paolo P. Lava, Jun 19 2008 a(n) = (4*ChebyshevU(n,8) - 11*ChebyshevU(n-1,8) -4)/7. - G. C. Greubel, Feb 10 2020 E.g.f.: (cosh(x) + sinh(x))*(-4 + (cosh(7*x) + sinh(7*x))*(4*cosh(3*sqrt(7)*x) + sqrt(7)*sinh(3*sqrt(7)*x)))/7. - Stefano Spezia, Feb 20 2020 MAPLE seq(simplify((4*ChebyshevU(n, 8) -11*ChebyshevU(n-1, 8) -4)/7)), n = 0..30); # G. C. Greubel, Feb 10 2020 MATHEMATICA Table[(4*ChebyshevU[n, 8] -11*ChebyshevU[n-1, 8] -4)/7, {n, 0, 30}] (* G. C. Greubel, Feb 10 2020 *) LinearRecurrence[{17, -17, 1}, {0, 7, 120}, 20] (* Harvey P. Dale, Dec 01 2022 *) PROG (PARI) a(n)=local(w); w=8+3*quadgen(28); imag(w^n)+4*(real(w^n)-1)/7 (PARI) vector(31, n, my(m=n-1); (4*polchebyshev(m, 2, 8) -11*polchebyshev(m-1, 2, 8) -4)/7 ) \\ G. C. Greubel, Feb 10 2020 (Magma) I:=[0, 7, 120]; [n le 3 select I[n] else 17*Self(n-1) -17*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 10 2020 (Sage) [(4*chebyshev_U(n, 8) -11*chebyshev_U(n-1, 8) -4)/7 for n in (0..30)] # G. C. Greubel, Feb 10 2020 (GAP) a:=[0, 7, 120];; for n in [4..30] do a[n]:=17*a[n-1]-17*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 10 2020 CROSSREFS Cf. A007750, A007752, A077412. Sequence in context: A092612 A263943 A302718 * A193785 A253276 A156955 Adjacent sequences: A007748 A007749 A007750 * A007752 A007753 A007754 KEYWORD nonn AUTHOR John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com) EXTENSIONS Edited by Michael Somos, Jul 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 01:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)