login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007751 Even bisection of A007750. 3
0, 7, 120, 1921, 30624, 488071, 7778520, 123968257, 1975713600, 31487449351, 501823476024, 7997688167041, 127461187196640, 2031381306979207, 32374639724470680, 515962854284551681, 8223031028828356224 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..825

K. R. S. Sastry, Problem 533 The College Mathematics Journal, 25, issue 4, 1994, p. 334.

K. R. S. Sastry, Square Products of Sums of Squares The College Mathematics Journal, 26, issue 4, 1995, p. 333.

Index entries for linear recurrences with constant coefficients, signature (17,-17,1).

FORMULA

G.f.: x*(7 + x)/((1-x)*(1-16*x+x^2)).

a(n) = 16*a(n-1) - a(n-2) + 8.

a(n) = -4/7 + (2/7)*( (8-3*sqrt(7))^n + (8+3*sqrt(7))^n + (sqrt(7)/14)*( (8+3*sqrt(7))^n - (8-3*sqrt(7))^n ), with n>=0 - Paolo P. Lava, Jun 19 2008

a(n) = (4*ChebyshevU(n,8) - 11*ChebyshevU(n-1,8) -4)/7. - G. C. Greubel, Feb 10 2020

E.g.f.: (cosh(x) + sinh(x))*(-4 + (cosh(7*x) + sinh(7*x))*(4*cosh(3*sqrt(7)*x) + sqrt(7)*sinh(3*sqrt(7)*x)))/7. - Stefano Spezia, Feb 20 2020

MAPLE

seq(simplify((4*ChebyshevU(n, 8) -11*ChebyshevU(n-1, 8) -4)/7)), n = 0..30); # G. C. Greubel, Feb 10 2020

MATHEMATICA

Table[(4*ChebyshevU[n, 8] -11*ChebyshevU[n-1, 8] -4)/7, {n, 0, 30}] (* G. C. Greubel, Feb 10 2020 *)

PROG

(PARI) a(n)=local(w); w=8+3*quadgen(28); imag(w^n)+4*(real(w^n)-1)/7

(PARI) vector(31, n, my(m=n-1); (4*polchebyshev(m, 2, 8) -11*polchebyshev(m-1, 2, 8) -4)/7 ) \\ G. C. Greubel, Feb 10 2020

(MAGMA) I:=[0, 7, 120]; [n le 3 select I[n] else 17*Self(n-1) -17*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 10 2020

(Sage) [(4*chebyshev_U(n, 8) -11*chebyshev_U(n-1, 8) -4)/7 for n in (0..30)] # G. C. Greubel, Feb 10 2020

(GAP) a:=[0, 7, 120];; for n in [4..30] do a[n]:=17*a[n-1]-17*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 10 2020

CROSSREFS

Cf. A007750, A007752, A077412.

Sequence in context: A092612 A263943 A302718 * A193785 A253276 A156955

Adjacent sequences:  A007748 A007749 A007750 * A007752 A007753 A007754

KEYWORD

nonn

AUTHOR

John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)

EXTENSIONS

Edited by Michael Somos, Jul 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 00:52 EST 2022. Contains 350410 sequences. (Running on oeis4.)