|
|
A007751
|
|
Even bisection of A007750.
|
|
3
|
|
|
0, 7, 120, 1921, 30624, 488071, 7778520, 123968257, 1975713600, 31487449351, 501823476024, 7997688167041, 127461187196640, 2031381306979207, 32374639724470680, 515962854284551681, 8223031028828356224
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
K. R. S. Sastry, Problem 533 The College Mathematics Journal, 25, issue 4, 1994, p. 334.
|
|
FORMULA
|
G.f.: x*(7 + x)/((1-x)*(1-16*x+x^2)).
a(n) = 16*a(n-1) - a(n-2) + 8.
a(n) = -4/7 + (2/7)*( (8-3*sqrt(7))^n + (8+3*sqrt(7))^n + (sqrt(7)/14)*( (8+3*sqrt(7))^n - (8-3*sqrt(7))^n ), with n>=0 - Paolo P. Lava, Jun 19 2008
a(n) = (4*ChebyshevU(n,8) - 11*ChebyshevU(n-1,8) -4)/7. - G. C. Greubel, Feb 10 2020
E.g.f.: (cosh(x) + sinh(x))*(-4 + (cosh(7*x) + sinh(7*x))*(4*cosh(3*sqrt(7)*x) + sqrt(7)*sinh(3*sqrt(7)*x)))/7. - Stefano Spezia, Feb 20 2020
|
|
MAPLE
|
seq(simplify((4*ChebyshevU(n, 8) -11*ChebyshevU(n-1, 8) -4)/7)), n = 0..30); # G. C. Greubel, Feb 10 2020
|
|
MATHEMATICA
|
Table[(4*ChebyshevU[n, 8] -11*ChebyshevU[n-1, 8] -4)/7, {n, 0, 30}] (* G. C. Greubel, Feb 10 2020 *)
LinearRecurrence[{17, -17, 1}, {0, 7, 120}, 20] (* Harvey P. Dale, Dec 01 2022 *)
|
|
PROG
|
(PARI) a(n)=local(w); w=8+3*quadgen(28); imag(w^n)+4*(real(w^n)-1)/7
(PARI) vector(31, n, my(m=n-1); (4*polchebyshev(m, 2, 8) -11*polchebyshev(m-1, 2, 8) -4)/7 ) \\ G. C. Greubel, Feb 10 2020
(Magma) I:=[0, 7, 120]; [n le 3 select I[n] else 17*Self(n-1) -17*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 10 2020
(Sage) [(4*chebyshev_U(n, 8) -11*chebyshev_U(n-1, 8) -4)/7 for n in (0..30)] # G. C. Greubel, Feb 10 2020
(GAP) a:=[0, 7, 120];; for n in [4..30] do a[n]:=17*a[n-1]-17*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 10 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|