Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jul 07 2012 19:03:55
%S 1,1,4,31,360,5601,109568,2586151,71555200,2271961825,81441188352,
%T 3253620672303,143361363439616,6907049546879041,361245668908466176,
%U 20383791705206338807,1234336634416972726272,79843983527411321710401,5494767253686351671459840,400863405346004202504321343
%N E.g.f. satisfies: A(x) = 1/(1 - sinh(x*A(x))).
%C The function 1/(1-sinh(x)) is the e.g.f. of A006154, where A006154(n) is the number of labeled ordered partitions of an n-set into odd parts.
%F E.g.f. A(x) satisfies: A( x*(1 - sinh(x)) ) = 1/(1 - sinh(x)).
%F E.g.f.: (1/x)*Series_Reversion( x*(1 - sinh(x)) ).
%F a(n) = [x^n] 1/(1 - sinh(x))^(n+1) / (n+1).
%F a(n) = A214223(n+1)/(n+1).
%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 360*x^4/4! + 5601*x^5/5! +...
%e The coefficients in initial powers of G(x) = 1/(1 - sinh(x)) begin:
%e G^1: [(1), 1, 2, 7, 32, 181, 1232, 9787, 88832, ..., A006154(n), ...];
%e G^2: [1,(2), 6, 26, 144, 962, 7536, 67706, ...];
%e G^3: [1, 3,(12), 63, 408, 3123, 27552, 275103, ...];
%e G^4: [1, 4, 20,(124), 920, 7924, 77600, 850924, ...];
%e G^5: [1, 5, 30, 215,(1800), 17225, 185280, 2211515, ...];
%e G^6: [1, 6, 42, 342, 3192,(33606), 393792, 5080662, ...];
%e G^7: [1, 7, 56, 511, 5264, 60487, (766976), 10634911, ...];
%e G^8: [1, 8, 72, 728, 8208, 102248, 1395072,(20689208), ...]; ...
%e where coefficients in parenthesis form initial terms of this sequence:
%e [1/1, 2/2, 12/3, 124/4, 1800/5, 33606/6, 766976/7, 20689208/8, ...].
%o (PARI) {a(n)=n!*polcoeff(1/x*serreverse(x*(1-sinh(x+x^2*O(x^n)))),n)}
%o (PARI) {a(n)=n!*polcoeff(1/(1 - sinh(x+x*O(x^n)))^(n+1)/(n+1), n)}
%Y Cf. A214223, A201627, A201595, A006154.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 03 2011