The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295255 Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*cos(x))). 6
 1, 1, 4, 27, 288, 4145, 75360, 1655003, 42628096, 1260274689, 42070233600, 1565308844539, 64237925148672, 2882670856605553, 140430196702035968, 7380867094885024635, 416320345406371921920, 25084955259883686000257, 1608058868442709001895936, 109278344982307590211482971 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: 1/(1 - x*cos(x)/(1 - x*cos(x)/(1 - x*cos(x)/(1 - x*cos(x)/(1 - ...))))), a continued fraction. a(n) ~ sqrt(2 - 2*r*sqrt(16*r^2 - 1)) * n^(n-1) / (exp(n) * r^n), where r = A196605 = 0.2585985822541894903... is the root of the equation r*cos(r) = 1/4. - Vaclav Kotesovec, Nov 18 2017 MAPLE a:=series(2/(1+sqrt(1-4*x*cos(x))), x=0, 21): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 27 2019 MATHEMATICA nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Cos[x]]), {x, 0, nmax}], x] Range[0, nmax]! nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Cos[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! CROSSREFS Cf. A000108, A295237, A295254, A295256, A295257, A295258. Sequence in context: A259485 A193467 A179494 * A203157 A304340 A336227 Adjacent sequences:  A295252 A295253 A295254 * A295256 A295257 A295258 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Nov 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 09:43 EST 2021. Contains 349485 sequences. (Running on oeis4.)