login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295256
Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*cosh(x))).
5
1, 1, 4, 33, 384, 5945, 115680, 2713417, 74568704, 2350925649, 83660474880, 3317599815761, 145087264278528, 6937450761100873, 360078818344534016, 20162761727269502265, 1211588127198611374080, 77769423447774393465377, 5310706204624302598127616, 384439720034220718046773249
OFFSET
0,3
FORMULA
E.g.f.: 1/(1 - x*cosh(x)/(1 - x*cosh(x)/(1 - x*cosh(x)/(1 - x*cosh(x)/(1 - ...))))), a continued fraction.
a(n) ~ sqrt(2 + 2*r*sqrt(1-16*r^2)) * n^(n-1) / (exp(n) * r^n), where r = 0.2428073624074744554637516823... is the root of the equation 2*r*(exp(2*r)+1) = exp(r). - Vaclav Kotesovec, Nov 18 2017
MAPLE
a:=series(2/(1+sqrt(1-4*x*cosh(x))), x=0, 21): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Cosh[x]]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Cosh[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 18 2017
STATUS
approved