Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 27 2019 10:02:23
%S 1,1,4,33,384,5945,115680,2713417,74568704,2350925649,83660474880,
%T 3317599815761,145087264278528,6937450761100873,360078818344534016,
%U 20162761727269502265,1211588127198611374080,77769423447774393465377,5310706204624302598127616,384439720034220718046773249
%N Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*cosh(x))).
%F E.g.f.: 1/(1 - x*cosh(x)/(1 - x*cosh(x)/(1 - x*cosh(x)/(1 - x*cosh(x)/(1 - ...))))), a continued fraction.
%F a(n) ~ sqrt(2 + 2*r*sqrt(1-16*r^2)) * n^(n-1) / (exp(n) * r^n), where r = 0.2428073624074744554637516823... is the root of the equation 2*r*(exp(2*r)+1) = exp(r). - _Vaclav Kotesovec_, Nov 18 2017
%p a:=series(2/(1+sqrt(1-4*x*cosh(x))),x=0,21): seq(n!*coeff(a,x,n),n=0..19); # _Paolo P. Lava_, Mar 27 2019
%t nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Cosh[x]]), {x, 0, nmax}], x] Range[0, nmax]!
%t nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Cosh[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A000108, A295237, A295254, A295255, A295257, A295258.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Nov 18 2017