login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111106
Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.
4
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
OFFSET
0,8
COMMENTS
Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
FORMULA
T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009
EXAMPLE
Rows begin:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 15, 7, 3, 1;
0, 105, 36, 12, 4, 1;
0, 945, 249, 64, 18, 5, 1;
0, 10395, 2190, 441, 100, 25, 6, 1:
0, 135135, 23535, 3807, 691, 145, 33, 7, 1;
0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 13 2005, Dec 20 2008
STATUS
approved