login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.
4

%I #18 Oct 19 2022 11:28:28

%S 1,0,1,0,1,1,0,3,2,1,0,15,7,3,1,0,105,36,12,4,1,0,945,249,64,18,5,1,0,

%T 10395,2190,441,100,25,6,1,0,135135,23535,3807,691,145,33,7,1,0,

%U 2027025,299880,40032,5880,1010,200,42,8,1

%N Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.

%C Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

%F T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).

%F Sum_{k=0..n} T(n, k) = A112934(n).

%F G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - _Paul Barry_, Jan 29 2009

%F Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - _Philippe Deléham_, Nov 28 2009

%e Rows begin:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 3, 2, 1;

%e 0, 15, 7, 3, 1;

%e 0, 105, 36, 12, 4, 1;

%e 0, 945, 249, 64, 18, 5, 1;

%e 0, 10395, 2190, 441, 100, 25, 6, 1:

%e 0, 135135, 23535, 3807, 691, 145, 33, 7, 1;

%e 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;

%p # Uses function PMatrix from A357368.

%p PMatrix(10, n -> doublefactorial(2*n-3)); # _Peter Luschny_, Oct 19 2022

%Y Columns: A000007, A001147, A034430; diagonals: A000012, A001477, A055998.

%Y Cf. A084938, A111088, A112934, A168441.

%K easy,nonn,tabl

%O 0,8

%A _Philippe Deléham_, Oct 13 2005, Dec 20 2008