login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119724
Generalized Pascal's triangle made using Mod[(Prime[n] - 1)/2, 4] == 2 primorial-like Stirling polynomials.
1
1, 1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -4, 6, -4, 1, 1, -5, 10, -10, 5, -1, 1, -10, 35, -60, 55, -26, 5, 1, -15, 85, -235, 355, -301, 135, -25, 1, -20, 160, -660, 1530, -2076, 1640, -700, 125, 1, -25, 260, -1460, 4830, -9726, 12020, -8900, 3625, -625, 1, -30, 385, -2760, 12130, -33876, 60650, -69000, 48125, -18750
OFFSET
0,5
COMMENTS
Apparently the sequence is based on the list of primes p=5, 13, 29, 37, 53, 61,... for which (p-1)/2 == 2 (mod 4), derived from A005097. The coefficients of the polynomial of degree n are listed in row n, where the polynomial is a product of the form prod_i (1-p_i*x), and p_i is the largest prime of that modular subset which is less than i. - R. J. Mathar, May 15 2013
FORMULA
a(n) = Flatten[Join[{{1}}, Table[Reverse[CoefficientList[Product[x - p1[n], {n, 0, m}], x]], {m, 0, 10}]]]
EXAMPLE
1; # 1
1, -1; # 1-x
1, -2, 1; # (1-x)^2
1, -3, 3, -1; # (1-x)^3
1, -4, 6, -4, 1; # (1-x)^4
1, -5, 10, -10, 5, -1; # (1-x)^5
1, -10, 35, -60, 55, -26, 5; # (1-x)^5*(1-5x)
1, -15, 85, -235, 355, -301, 135, -25; # (1-x)^5*(1-5x)^2
1, -20, 160, -660, 1530, -2076, 1640, -700, 125; # (1-x)^5*(1-5x)^3
1, -25, 260, -1460, 4830, -9726, 12020, -8900, 3625, -625; # (1-x)^5*(1-5x)^4
1, -30, 385, -2760, 12130, -33876, 60650, -69000, 48125, -18750,.. # (1-x)^5*(1-5x)^5
MATHEMATICA
a = Join[{{1}}, Table[Reverse[ CoefficientList[Product[x - p1[n], {n, 0, m}], x]], {m, 0, 10}]] aout = Flatten[a]
CROSSREFS
Sequence in context: A076831 A197061 A230861 * A162424 A302998 A303484
KEYWORD
sign,uned,tabf,obsc
AUTHOR
Roger L. Bagula Jun 14 2006
EXTENSIONS
Should be edited in the same way that I edited A118686. Unfortunately p1 has not been defined, but must be related to "Mod[(Prime[n] - 1)/2, 4] == 2". Compare the definition of p[n] in A118686. - N. J. A. Sloane, Oct 08 2006
STATUS
approved