The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119724 Generalized Pascal's triangle made using Mod[(Prime[n] - 1)/2, 4] == 2 primorial-like Stirling polynomials. 1
 1, 1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -4, 6, -4, 1, 1, -5, 10, -10, 5, -1, 1, -10, 35, -60, 55, -26, 5, 1, -15, 85, -235, 355, -301, 135, -25, 1, -20, 160, -660, 1530, -2076, 1640, -700, 125, 1, -25, 260, -1460, 4830, -9726, 12020, -8900, 3625, -625, 1, -30, 385, -2760, 12130, -33876, 60650, -69000, 48125, -18750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Apparently the sequence is based on the list of primes p=5, 13, 29, 37, 53, 61,... for which (p-1)/2 == 2 (mod 4), derived from A005097. The coefficients of the polynomial of degree n are listed in row n, where the polynomial is a product of the form prod_i (1-p_i*x), and p_i is the largest prime of that modular subset which is less than i. - R. J. Mathar, May 15 2013 LINKS FORMULA a(n) = Flatten[Join[{{1}}, Table[Reverse[CoefficientList[Product[x - p1[n], {n, 0, m}], x]], {m, 0, 10}]]] EXAMPLE 1;   # 1 1, -1; # 1-x 1, -2, 1; # (1-x)^2 1, -3, 3, -1; # (1-x)^3 1, -4, 6, -4, 1;  # (1-x)^4 1, -5, 10, -10, 5, -1;  # (1-x)^5 1, -10, 35, -60, 55, -26, 5;  # (1-x)^5*(1-5x) 1, -15, 85, -235, 355, -301, 135, -25;  # (1-x)^5*(1-5x)^2 1, -20, 160, -660, 1530, -2076, 1640, -700, 125; # (1-x)^5*(1-5x)^3 1, -25, 260, -1460, 4830, -9726, 12020, -8900, 3625, -625; # (1-x)^5*(1-5x)^4 1, -30, 385, -2760, 12130, -33876, 60650, -69000, 48125, -18750,..  # (1-x)^5*(1-5x)^5 MATHEMATICA a = Join[{{1}}, Table[Reverse[ CoefficientList[Product[x - p1[n], {n, 0, m}], x]], {m, 0, 10}]] aout = Flatten[a] CROSSREFS Cf. A007318, A118686. Sequence in context: A076831 A197061 A230861 * A162424 A302998 A303484 Adjacent sequences:  A119721 A119722 A119723 * A119725 A119726 A119727 KEYWORD sign,uned,tabf,obsc AUTHOR Roger L. Bagula Jun 14 2006 EXTENSIONS Should be edited in the same way that I edited A118686. Unfortunately p1 has not been defined, but must be related to "Mod[(Prime[n] - 1)/2, 4] == 2". Compare the definition of p[n] in A118686. - N. J. A. Sloane, Oct 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 13:05 EDT 2021. Contains 346290 sequences. (Running on oeis4.)