This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119726 Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 4*T(n-1, k-1) + 2*T(n-1, k). 6
 1, 1, 1, 1, 6, 1, 1, 16, 26, 1, 1, 36, 116, 106, 1, 1, 76, 376, 676, 426, 1, 1, 156, 1056, 2856, 3556, 1706, 1, 1, 316, 2736, 9936, 18536, 17636, 6826, 1, 1, 636, 6736, 30816, 76816, 109416, 84196, 27306, 1, 1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Second column is A048487. Second diagonal is A020989. REFERENCES TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened EXAMPLE Triangle begins as:   1;   1,    1;   1,    6,     1;   1,   16,    26,     1;   1,   36,   116,   106,      1;   1,   76,   376,   676,    426,      1;   1,  156,  1056,  2856,   3556,   1706,      1;   1,  316,  2736,  9936,  18536,  17636,   6826,      1;   1,  636,  6736, 30816,  76816, 109416,  84196,  27306,      1;   1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1; MAPLE T:= proc(n, k) option remember;       if k=1 and k=n then 1     else 4*T(n-1, k-1) + 2*T(n-1, k)       fi end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019 MATHEMATICA T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 4*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *) PROG (PARI) T(n, k) = if(k==1 || k==n, 1, 4*T(n-1, k-1) + 2*T(n-1, k)); (MAGMA) function T(n, k)   if k eq 1 or k eq n then return 1;   else return 4*T(n-1, k-1) + 2*T(n-1, k);   end if;   return T; end function; [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019 (Sage) @CachedFunction def T(n, k):     if (k==1 or k==n): return 1     else: return 4*T(n-1, k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019 CROSSREFS Cf. A007318, A020989, A048483, A048487, A119725, A119727, A123208. Sequence in context: A296963 A176560 A152602 * A103999 A154985 A157275 Adjacent sequences:  A119723 A119724 A119725 * A119727 A119728 A119729 KEYWORD easy,nonn,tabl AUTHOR Zerinvary Lajos, Jun 14 2006 EXTENSIONS Edited by Don Reble, Jul 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)