login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296963
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 2, 3 or 5 king-move neighboring 1s.
8
1, 1, 1, 1, 6, 1, 1, 16, 16, 1, 1, 31, 60, 31, 1, 1, 96, 177, 177, 96, 1, 1, 301, 869, 910, 869, 301, 1, 1, 801, 3994, 6506, 6506, 3994, 801, 1, 1, 2261, 16348, 44519, 88469, 44519, 16348, 2261, 1, 1, 6746, 71669, 289576, 1064451, 1064451, 289576, 71669, 6746, 1, 1
OFFSET
1,5
COMMENTS
Table starts
.1....1......1........1..........1............1..............1...............1
.1....6.....16.......31.........96..........301............801............2261
.1...16.....60......177........869.........3994..........16348...........71669
.1...31....177......910.......6506........44519.........289576.........1933227
.1...96....869.....6506......88469......1064451.......11592086.......134880572
.1..301...3994....44519....1064451.....21225209......374855869......7251402774
.1..801..16348...289576...11592086....374855869....10777843410....340260590831
.1.2261..71669..1933227..134880572...7251402774...340260590831..17890820040132
.1.6746.320252.12967823.1582121415.141096153092.10761797803245.941238613911895
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -5*a(n-2) +11*a(n-3) -18*a(n-4) +4*a(n-5)
k=3: [order 21]
k=4: [order 51]
EXAMPLE
Some solutions for n=5 k=4
..1..1..0..0. .0..1..0..0. .0..0..1..1. .1..1..1..0. .0..0..1..1
..0..1..0..0. .0..1..1..0. .0..0..0..1. .0..1..0..1. .0..1..1..0
..0..0..1..1. .1..0..0..0. .0..1..0..0. .1..0..1..1. .1..1..1..0
..0..1..1..1. .1..1..1..0. .1..1..0..0. .1..1..1..0. .0..0..1..1
..0..1..0..0. .1..0..1..1. .1..0..0..0. .1..0..0..0. .0..1..1..0
CROSSREFS
Sequence in context: A109001 A203005 A357156 * A176560 A152602 A119726
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 22 2017
STATUS
approved