login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203005 Array:  row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A115255 (in square format); by antidiagonals. 2
1, -1, 1, -6, 1, 1, -15, 47, -1, 1, -40, 270, -488, 1, 1, -165, 1738, -5866, 5829, -1, 1, -1074, 15695, -80060, 156495, -74674, 1, 1, -9039, 181581, -1360515, 4552003, -5997165, 997295, -1, 1, -86700, 2566036, -28081556 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

LINKS

Table of n, a(n) for n=1..39.

S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.

A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.

EXAMPLE

Top of the array:

1...-1

1...-6....1

1...-15...47....-1

1...-40...270...-488...1

MATHEMATICA

f[k_] := Binomial[2 k - 2, k - 1];

U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];

L[n_] := Transpose[U[n]];

F[n_] := CharacteristicPolynomial[L[n].U[n], x];

c[n_] := CoefficientList[F[n], x]

TableForm[Flatten[Table[F[n], {n, 1, 10}]]]

Table[c[n], {n, 1, 12}]

Flatten[%]

TableForm[Table[c[n], {n, 1, 10}]]

CROSSREFS

Cf. A115255, A202605.

Sequence in context: A146958 A154653 A109001 * A296963 A176560 A152602

Adjacent sequences:  A203002 A203003 A203004 * A203006 A203007 A203008

KEYWORD

tabl,sign

AUTHOR

Clark Kimberling, Dec 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 09:46 EST 2019. Contains 329261 sequences. (Running on oeis4.)