login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176560
A symmetrical triangle recursion:q=5;t(n,m,0)=Binomial[n,m];t(n,m,1)=Narayana(n,m);t(n,m,2)=Eulerian(n+1,m);t(n,m,q)=t(n,m,g-2)+t(n,m,q-3)
0
1, 1, 1, 1, 6, 1, 1, 16, 16, 1, 1, 35, 85, 35, 1, 1, 71, 351, 351, 71, 1, 1, 140, 1295, 2590, 1295, 140, 1, 1, 274, 4488, 16108, 16108, 4488, 274, 1, 1, 537, 14943, 89409, 157953, 89409, 14943, 537, 1, 1, 1057, 48379, 457711, 1315645, 1315645, 457711, 48379
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 8, 34, 157, 846, 5462, 41742, 367733, 3645586, 39975575,...}.
FORMULA
q=5;
t(n,m,0)=Binomial[n,m];
t(n,m,1)=Narayana(n,m);
t(n,m,2)=Eulerian(n+1,m);
t(n,m,q)=t(n,m,g-2)+t(n,m,q-3)
EXAMPLE
{1},
{1, 1},
{1, 6, 1},
{1, 16, 16, 1},
{1, 35, 85, 35, 1},
{1, 71, 351, 351, 71, 1},
{1, 140, 1295, 2590, 1295, 140, 1},
{1, 274, 4488, 16108, 16108, 4488, 274, 1},
{1, 537, 14943, 89409, 157953, 89409, 14943, 537, 1},
{1, 1057, 48379, 457711, 1315645, 1315645, 457711, 48379, 1057, 1},
{1, 2090, 153461, 2208437, 9751973, 15743651, 9751973, 2208437, 153461, 2090, 1}
MATHEMATICA
<< DiscreteMath`Combinatorica`
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
t[n_, m_, 2] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 20 2010
STATUS
approved