OFFSET
1,2
COMMENTS
From R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers F(j), j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
1;
1, 1;
1, 2, 1;
1, 4, 5, 2;
1, 7, 17, 17, 6;
LINKS
Robert Israel, Table of n, a(n) for n = 1..98
EXAMPLE
0th elementary symmetric function: 1
1st e.s.f. of {1,1}: 1+1=2
2nd e.s.f. of {1,1,2}: 1*1+1*2+2*2=5
MAPLE
f:= proc(n) local x, P, i;
P:= mul(x+combinat:-fibonacci(i), i=1..n);
coeff(P, x, 1)
end proc:
map(f, [$1..20]); # Robert Israel, Aug 18 2024
MATHEMATICA
f[k_] := Fibonacci[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 18}] (* A203006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 29 2011
STATUS
approved