%I #6 Jan 14 2022 21:25:09
%S 1,3,2,7,8,2,15,24,12,2,31,64,48,16,2,63,160,160,80,20,2,127,384,480,
%T 320,120,24,2,255,896,1344,1120,560,168,28,2,511,2048,3584,3584,2240,
%U 896,224,32,2,1023,4608,9216,10752,8064,4032,1344,288,36,2,2047
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A210203; see the Formula section.
%C Column 1: -1+2^n.
%C Row sums: A048473.
%C Alternating row sums: 1,1,1,1,1,1,1,1,1,...
%C For a discussion and guide to related arrays, see A208510.
%C Row sums without first column give A056182. - _Alois P. Heinz_, Jan 14 2022
%F u(n,x)=u(n-1,x)+v(n-1,x)+1,
%F v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
%F where u(1,x)=1, v(1,x)=1.
%e First five rows:
%e 1
%e 3....2
%e 7....8....2
%e 15...24...12...2
%e 31...64...48...16...2
%e First three polynomials v(n,x): 1, 3 + 2x , 7 + 8x + 2x^2.
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
%t v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A210203 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A210204 *)
%Y Cf. A210203, A208510.
%Y Cf. A056182.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Mar 18 2012