login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175578
Decimal expansion of the sum over the inverse icosahedral numbers.
6
1, 1, 2, 3, 5, 6, 5, 9, 6, 6, 8, 9, 9, 2, 5, 1, 8, 8, 7, 5, 7, 3, 9, 3, 7, 5, 7, 9, 0, 1, 5, 8, 7, 9, 6, 4, 5, 3, 5, 3, 8, 1, 1, 4, 1, 6, 4, 8, 5, 5, 0, 4, 9, 8, 0, 6, 0, 6, 1, 7, 0, 2, 6, 9, 2, 9, 8, 1, 9, 2, 6, 0, 3, 3, 6, 1, 5, 4, 2, 6, 6, 9, 5, 8, 2, 6, 0, 9, 2, 1, 0, 6, 8, 8, 8, 7, 7, 8, 1, 0, 7, 2, 6, 4, 7
OFFSET
1,3
COMMENTS
Defined by sum_{n>=1} 1/A006564(n) = 1/1 + 1/12 +1/48 + 1/124 +...
Equals gamma + Pi*sqrt(5/3)*tanh(Pi*sqrt(15)/10)/2 + Re psi( 1/2+i*sqrt(15)/10 ), where psi is the digamma function, i the imaginary unit, Pi = A000796, sqrt(15)=A010472, gamma=A001620.
LINKS
EXAMPLE
1.12356596689925188757393..
MAPLE
Digits := 120 : gamma+ Psi(1/2+sqrt(15)*I/10)+sqrt(15)/6*Pi*tanh(Pi*sqrt(15)/10) ; evalf(Re(%)) ;
MATHEMATICA
N[EulerGamma + PolyGamma[1/2 + (I*Sqrt[15])/10] + (1/2)*Tanh[(Pi*Sqrt[15])/10]*Pi*Sqrt[5/3] // Re, 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
PROG
(PARI) Euler+Pi*sqrt(5/3)*tanh(Pi*sqrt(15)/10)/2+real(psi(1/2+ I*sqrt(15)/10)) \\ Charles R Greathouse IV, Jul 19 2013
CROSSREFS
Cf. A006564 (icosahedral numbers).
Cf. sums of inverses: A152623 (tetrahedral numbers), A002117 (cubes), A175577 (octahedral numbers), A295421 (dodecahedral numbers).
Sequence in context: A254105 A247548 A001600 * A347861 A316609 A307327
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 15 2010
STATUS
approved