login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292713
Number of multisets of nonempty words with a total of n letters over n-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
5
1, 1, 4, 14, 67, 343, 2151, 14900, 119259, 1055520, 10465854, 113479756, 1350508150, 17373376892, 241576630993, 3596468789967, 57232276979726, 967517444008250, 17339617861447844, 328037083000497867, 6537494747743375847, 136820214583596515519
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{j=1..n} 1/(1-x^j)^A226873(j,n).
a(n) = A292712(n,n).
a(n) ~ c * n!, where c = A247551 = 2.5294774720791526... - Vaclav Kotesovec, Oct 05 2017
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {a}.
a(2) = 4: {aa}, {ab}, {ba}, {a,a}.
a(3) = 14: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}, {a,a,a}.
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
g(d, k), d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*g[d, k], {d, Divisors[j]}]* A[n - j, k], {j, 1, n}]/n];
a[n_] := A[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A292712.
Row sums of A319495.
Sequence in context: A292723 A292724 A292725 * A007025 A221538 A301511
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2017
STATUS
approved