login
A081012
a(n) = Fibonacci(4n+1) - 2, or Fibonacci(2n+2)*Lucas(2n-1).
1
3, 32, 231, 1595, 10944, 75023, 514227, 3524576, 24157815, 165580139, 1134903168, 7778742047, 53316291171, 365435296160, 2504730781959, 17167680177563, 117669030460992, 806515533049391, 5527939700884755, 37889062373143904
OFFSET
1,1
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(3+8*x-x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 22 2012
a(n) = 7*a(n-1) - a(n-2) + 10, n>=3. - R. J. Mathar, Nov 07 2015
MAPLE
with(combinat) for n from 0 to 25 do printf(`%d, `, fibonacci(4*n+1)-2) od # James A. Sellers, Mar 03 2003
MATHEMATICA
Fibonacci[4*Range[30]+1] -2 (* G. C. Greubel, Jul 14 2019 *)
PROG
(Magma) [Fibonacci(4*n+1)-2: n in [1..30]]; // Vincenzo Librandi, Apr 20 2011
(PARI) vector(30, n, fibonacci(4*n+1)-2) \\ G. C. Greubel, Jul 14 2019
(Sage) [fibonacci(4*n+1)-2 for n in (1..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([1..30], n-> Fibonacci(4*n+1) -2); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A264574 A002059 A028447 * A187919 A198320 A035533
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
STATUS
approved