OFFSET
0,2
COMMENTS
lim(a(n)^(1/n), n -> infinity) = 7.832221... - Emeric Deutsch, Oct 14 2006
LINKS
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (37).
H. Narumi and H. Hosoya, Generalized expression of the perfect matching number of 2 X 3 X n lattices, J. Math. Phys. 34 (3), 1993, 1043-1051.
FORMULA
a(n) = 6a(n - 1) + 21a(n - 2) - 42a(n - 3) - 89a(n - 4) + 68a(n - 5) + 89a(n - 6) - 42a(n - 7) - 21a(n - 8) + 6a(n - 9) + a(n - 10). - Emeric Deutsch, Oct 14 2006
G.f.: ( -1 +3*x +7*x^2 -16*x^3 -14*x^4 +16*x^5 +7*x^6 -3*x^7 -x^8 ) / ( (x^2-x-1) *(x^8 +7*x^7 -13*x^6 -48*x^5 +28*x^4 +48*x^3 -13*x^2 -7*x+1) ). - R. J. Mathar, Dec 06 2013
MAPLE
a[0]:=1: a[1]:=3: a[2]:=32: a[3]:=229: a[4]:=1845: a[5]:=14320: a[6]:=112485: a[7]:=880163: a[8]:=6895792: a[9]:=54003765: a[10]:=422983905: for n from 11 to 20 do a[n]:=6*a[n-1]+21*a[n-2]-42*a[n-3]-89*a[n-4]+68*a[n-5]+89*a[n-6]-42*a[n-7]-21*a[n-8]+6*a[n-9]+a[n-10] od: seq(a[n], n=0..30); # Emeric Deutsch, Oct 14 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved