Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Nov 28 2024 14:43:40
%S 4,15,91,612,4183,28659,196420,1346271,9227467,63245988,433494439,
%T 2971215075,20365011076,139583862447,956722026043,6557470319844,
%U 44945570212855,308061521170131,2111485077978052,14472334024676223
%N a(n) = Fibonacci(4n+3) + 2, or Fibonacci(2n+3)*Lucas(2n).
%C For n>0, a(n) is the area of the trapezoid defined by the four points (F(n+1), F(n+2)), (F(n+2), F(n+1)), (F(n+3), F(n+4)), and (F(n+4), F(n+3)) where F(n) = A000045(n). - _J. M. Bergot_, May 14 2014
%D Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75
%H G. C. Greubel, <a href="/A081011/b081011.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).
%F a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
%F G.f.: (4-17*x+3*x^2)/((1-x)*(1-7*x+x^2)). - _Colin Barker_, Jun 22 2012
%F Product_{n>=0} (1 - 1/a(n)) = (3-phi)/2 = A187798. - _Amiram Eldar_, Nov 28 2024
%p with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+3)+2) od # _James A. Sellers_, Mar 03 2003
%t Table[Fibonacci[4n+3] +2, {n,0,30}] (* or *)
%t Table[Fibonacci[2n+3]*LucasL[2n], {n, 0, 30}] (* _Alonso del Arte_, Apr 18 2011 *)
%t LinearRecurrence[{8,-8,1},{4,15,91},30] (* _Harvey P. Dale_, Apr 22 2017 *)
%o (Magma) [Fibonacci(4*n+3)+2: n in [0..30]]; // _Vincenzo Librandi_, Apr 18 2011
%o (PARI) vector(30, n, n--; fibonacci(4*n+3)+2) \\ _G. C. Greubel_, Jul 14 2019
%o (Sage) [fibonacci(4*n+3)+2 for n in (0..30)] # _G. C. Greubel_, Jul 14 2019
%o (GAP) List([0..30], n-> Fibonacci(4*n+3) -2); # _G. C. Greubel_, Jul 14 2019
%Y Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A187798.
%K nonn,easy
%O 0,1
%A _R. K. Guy_, Mar 01 2003
%E More terms from _James A. Sellers_, Mar 03 2003