Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 May 04 2024 04:46:09
%S 1,2,12,77,520,3612,25557,183192,1325808,9666635,70897112,522472392,
%T 3865669717,28697325048,213649228560,1594540806612,11926354293792,
%U 89372808145692,670865679851667,5043360211505000,37965778448487120,286151354441445570,2159143860124095120
%N Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x-x^2) )^n.
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(3*n-k-1,n-2*k).
%F The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-x-x^2) ).
%F D-finite with recurrence +575*n*(n-1)*(n-2)*a(n) +40*(n-1)*(n-2)*(125*n-178)*a(n-1) -16*(n-2)*(3272*n^2-5536*n+75)*a(n-2) +8*(-22112*n^3+169392*n^2-450082*n+415827)*a(n-3) +1344*(96*n^3-1328*n^2+5794*n-8139)*a(n-4) +3072*(4*n-15)*(2*n-9)*(4*n-17)*a(n-5)=0. - _R. J. Mathar_, May 02 2024
%F a(n) ~ sqrt((1/8 + cos(arccos(sqrt(37)/8)/3)/sqrt(37))/(Pi*n)) / (-2/3 + sqrt(35/18)*cos(arccos(-4537/(560*sqrt(70)))/3))^n. - _Vaclav Kotesovec_, May 04 2024
%p A372233 := proc(n)
%p add(binomial(n+k-1,k) * binomial(3*n-k-1,n-2*k),k=0..floor(n/2));
%p end proc:
%p seq(A372233(n),n=0..50) ; # _R. J. Mathar_, May 02 2024
%t Table[SeriesCoefficient[1/((1-x)*(1-x-x^2))^n, {x, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, May 04 2024 *)
%o (PARI) a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
%Y Cf. A213684, A236339, A372458, A372460.
%K nonn
%O 0,2
%A _Seiichi Manyama_, May 02 2024