This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032195 Number of necklaces with 10 black beads and n-10 white beads. 1
 1, 1, 6, 22, 73, 201, 504, 1144, 2438, 4862, 9252, 16796, 29414, 49742, 81752, 130752, 204347, 312455, 468754, 690690, 1001603, 1430715, 2016144, 2804880, 3856892, 5245128, 7060984, 9414328, 12440668, 16301164 (list; graph; refs; listen; history; text; internal format)
 OFFSET 10,3 COMMENTS The g.f. is Z(C_10,x)/x^10, the 10-variate cycle index polynomial for the cyclic group C_10, with substitution x[i]->1/(1-x^i), i=1,...,10. By Polya enumeration, a(n+10) is the number of cyclically inequivalent 10-necklaces whose 10 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_10,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005 LINKS C. G. Bower, Transforms (2) FORMULA "CIK[ 10 ]" (necklace, indistinct, unlabeled, 10 parts) transform of 1, 1, 1, 1... G.f.: (x^10)*(1-3*x+4*x^2+12*x^3-8*x^4-x^5+31*x^6-4*x^8+16*x^9 +11*x^10 +3*x^11+8*x^12+4*x^13+4*x^14+x^15+x^16) /((1-x)^4*(1-x^2)^4 *(1-x^5)*(1-x^10)). G.f.: (1/10)*x^10*(1/(1 - x)^10 + 1/(1 - x^2)^5 + 4/(1 - x^5)^2 + 4/(1 - x^10)^1). - Herbert Kociemba, Oct 22 2016 MATHEMATICA k = 10; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *) CROSSREFS Column k=10 of A047996. Cf. A004526, A007997, A008610, A008646, A032191, A032192, A032193, A032194. Sequence in context: A178706 A276779 A159555 * A217530 A111566 A200052 Adjacent sequences:  A032192 A032193 A032194 * A032196 A032197 A032198 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 05:13 EDT 2018. Contains 316519 sequences. (Running on oeis4.)