This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032193 Number of necklaces with 8 black beads and n-8 white beads. 4
 1, 1, 5, 15, 43, 99, 217, 429, 810, 1430, 2438, 3978, 6310, 9690, 14550, 21318, 30667, 43263, 60115, 82225, 111041, 148005, 195143, 254475, 328756, 420732, 534076, 672452, 840652, 1043460, 1287036, 1577532, 1922741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 8,3 COMMENTS The g.f. is Z(C_8,x)/x^8, the 8-variate cycle index polynomial for the cyclic group C_8, with substitution x[i]->1/(1-x^i), i=1,...,8. Therefore by Polya enumeration a(n+8) is the number of cyclically inequivalent 8-necklaces whose 8 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_8,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005 From Petros Hadjicostas, Aug 31 2018: (Start) The CIK[k] transform of sequence (c(n): n>=1) has generating function A_k(x) = (1/k)*Sum_{d|k} phi(d)*C(x^d)^{k/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n>=1). When c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (x^k/k)*Sum_{d|k} phi(d)*(1-x^d)^{-k/d}, which is the g.f. of the number a_k(n) of necklaces of n beads of 2 colors with k of them black and n-k of them white. Using Taylor expansions, we can easily prove that a_k(n) = (1/k)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d - 1, k/d - 1) = (1/n)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d, k/d), which is Robert A. Russell's formula in the Mathematica code below. For this sequence k = 8, and thus we get the formulae below. (End) LINKS C. G. Bower, Transforms (2) F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only] FORMULA "CIK[ 8 ]" (necklace, indistinct, unlabeled, 8 parts) transform of 1, 1, 1, 1... G.f.: (x^8)*(1-3*x+5*x^2+3*x^3-4*x^4+4*x^5+6*x^6-4*x^7+7*x^8-x^9+x^10+x^11)/((1-x)^4*(1-x^2)^2*(1-x^4)*(1-x^8)). G.f.: 1/8*x^8*(1/(1-x)^8+1/(1-x^2)^4+2/(1-x^4)^2+4/(1-x^8)^1). - Herbert Kociemba, Oct 22 2016 a(n) = (1/8)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d - 1, 8/d - 1) = (1/n)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d, 8/d). - Petros Hadjicostas, Aug 31 2018 MATHEMATICA k = 8; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *) CoefficientList[Series[1/8*(1/(1 - x)^8 + 1/(1 - x^2)^4 + 2/(1 - x^4)^2 + 4/(1 - x^8)^1), {x, 0, 30}], x] (* Stefano Spezia, Sep 01 2018 *) CROSSREFS Column k=8 of A047996. Cf. A004526, A005514, A007997, A008610, A008646, A032191, A032192. Sequence in context: A053731 A111295 A200760 * A178965 A005665 A025471 Adjacent sequences:  A032190 A032191 A032192 * A032194 A032195 A032196 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 21:37 EST 2019. Contains 319206 sequences. (Running on oeis4.)